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Abstract

Does the level of deposits matter for bank fragility and efficiency? By augmenting

a standard model of endogenous bank runs with a consumption-saving decision, we

obtain two results. First, depositors’ incentives to run are a function of savings held

as bank deposits. Second, a saving externality emerges since individual depositors

do not internalize the effect of their savings on the bank-run probability. Therefore,

the economy features inefficient savings and bank liquidity provision, as well as

excessive bank fragility. Finally, we characterize the optimal policy to implement

the efficient allocation.
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1 Introduction

Banks and their health are important for economic outcomes and have attracted a great

deal of attention in policy and academic debates over the years. Banks’ reliance on short-

term debt as a source of funding has been considered a key source of fragility (e.g.,

Diamond and Dybvig, 1983; Allen and Gale, 2004; Krishnamurthy, 2010; Brunnermeier

and Oehmke, 2013). Noteworthy is the unprecedented increase in total deposits that banks

experienced at the start of the COVID-19 crisis (see Li et al., 2020; Levine et al., 2021).1

Figure 1 illustrates the evolution of total bank deposits in the last years for the U.S. and

the Euro Area. They experienced a remarkable jump in the first months of 2020. From

January to May 2020, bank deposits increased by around $2 trillion in the U.S. and e1.5

trillion in the Euro Area. A series of bank failures in early 2023 – in particular, Silicon

Valley Bank and Signature Bank in the U.S. – suggests a connection between large inflows

of uninsured deposits and banks’ resilience to panic-driven depositors’ runs.2 In light of

this evidence, two questions naturally arise. Does the size of a bank’s deposit base matter

for its fragility? If so, do agents correctly internalize this effect when deciding how much

to save?

In this paper, we address these two questions through the lens of a bank-run model

augmented with a consumption-saving decision. First, we show that the level of deposits

has an effect on the probability of a bank run. Second, we characterize the existence of a

saving externality : Individual investors fail to fully internalize the impact of their decision

to save in bank deposits on the probability of a bank run. As a result, the allocation is

constrained inefficient. The economy features excessive financial fragility, and inefficient

liquidity provision and bank size.

To carry out this analysis, we build a model in which the bank-run probability is

endogenous and, as in Goldstein and Pauzner (2005), it is uniquely determined using the
1Deposit decisions have always been a key determinant of the size of financial intermediation. In fact,

in the period 1896-2012, deposits represented on average around 80 per cent of U.S. banks’ liabilities
(Hanson et al., 2015). The literature has also recognized savers’ demand for money-like assets as a key
driver of financial crises and macroeconomic activity (Gorton et al., 2012; Dang et al., 2017).

2It is worth noting that to date uninsured deposits still represent about half of the total deposits in
the largest commercial banks both in the U.S. (Egan et al., 2017) and in the Euro Area (source: ECB
Bank Balance Sheet Items and European Banking Authority data).
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(b) Euro Area
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Figure 1: Total deposits in commercial banks, in billions of U.S. dollars in Panel (a) and
billions of euros in Panel (b).

global-game methodology. We extend this framework by adding an initial consumption-

saving decision. This allows us to endogenize the level of deposits and study its implica-

tions for banks’ fragility and the welfare properties of the decentralized equilibrium.

To the best of our knowledge, this is the first attempt to study the interaction between

consumption-saving decisions and endogenous bank runs. In the bank-run literature, it is

standard to take as given the amount of deposits and therefore the funds intermediated

by banks (e.g. Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005). We show that

this apparently innocuous assumption has important implications for the efficiency of the

equilibrium. While in standard bank-run frameworks banks issuing demandable deposit

contracts can achieve the constrained efficient allocation despite a positive probability of

runs, this is not true in our framework. The allocation is constrained inefficient because

financial fragility is endogenous to the level of savings and consumers do not fully inter-

nalize the effect of their individual saving decisions. This provides a novel rationale for

policy intervention.

The model features three dates. At the initial date, ex-ante identical risk-averse agents

decide how much to consume and how much to deposit in the banking sector. Aggregate

deposits fully determine bank size. Competitive banks issue demand deposits and invest

them in a profitable risky project whose returns at the final date depend on the fun-

damental of the economy. In exchange for the funds provided to banks, depositors are
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promised a positive deposit rate if they withdraw at an interim date (run) and a higher

one if they withdraw at the final date and the bank’s investment project is successful.

Banks meet early withdrawals by liquidating a share of their long-term investment and,

in case banks fail to repay the promised deposit rate, depositors receive a pro-rata share

of the available resources. Depositors take their individual withdrawal decisions at the

interim date based on an imperfect signal on the realization of the economy’s fundamen-

tal. The signal provides information about both the fundamental and the proportion of

depositors running. Depositors run if the fundamental of the economy falls below a unique

threshold, which is a function of the terms of the deposit contract. Runs are the result of

a coordination failure: Depositors run out of fear that others will do the same and there

will not be enough resources left in the bank to repay those who wait. We refer to these

events as panic-driven runs.

Our analysis provides novel insights into the sources of financial fragility and the effi-

ciency of the decentralized allocation. First, depositors’ incentives to run are a function

of the level of deposits. When deciding whether to run, depositors compare the expected

utility from running with that from waiting. Since depositors are risk averse and con-

sumption differs in the two dates, a marginal increase in the level of deposits is valued

differently at dates 1 and 2. Hence, the level of deposits affects their incentives to run.

In a reasonable parameter space, we further show that a marginal increase in the level

of deposits is valued more at date 1 than at date 2. Hence, an increase in the level of

deposits leads to an increase in depositors’ incentives to run. This is in line with the em-

pirical evidence of Iyer and Puri (2012) that shows a positive relation between depositors’

account balances and their likelihood of running.

Second, the economy exhibits a saving externality. While a constrained social planner

subject to panic-driven runs internalizes the effect of the level of deposits on the incentives

to withdraw, individual depositors do not. In the decentralized economy, each depositor

finds it optimal to follow the run behavior of all others, and therefore takes as given the

level of the fundamental below which a bank run occurs. Due to the saving externality,

in the decentralized economy individual saving decisions are socially costly. They lead to
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excessive financial fragility, as well as constrained inefficient liquidity provision and bank

size.

Overall, our results bring about a novel motive for public intervention. Since the

inefficiency of the decentralized economy is rooted in the depositors’ consumption-saving

decisions, fiscal policy (i.e. a deposit tax) could represent an effective tool to control

the inefficient levels of savings in the economy, thereby contributing to the reduction of

financial fragility. This represents a new rationale for coordination between prudential

and fiscal policy.

Literature Review. Our paper contributes to three strands of the literature. Our

analysis takes a step forward in understanding the trade-offs associated with the role of

banks as liquidity providers (e.g. Diamond and Dybvig, 1983; Goldstein and Pauzner,

2005; Ennis and Keister, 2009; Ahnert et al., 2019). The novelty of our paper is to endog-

enize consumers’ saving decisions and study their implications for fragility and efficiency.

While in previous contributions financial intermediation is constrained efficient, the sav-

ing externality that arises from the depositors’ saving decisions leads to an inefficiency

that justifies government intervention. Hence, our paper also connects to the literature

that studies the efficiency of decentralized banking economies (e.g. Allen and Gale, 2004;

Farhi et al., 2009; Stein, 2012; Allen et al., 2014).

Closely related to our paper is Peck and Setayesh (2022). In a Diamond-Dybvig frame-

work, they study how deposit size affects the feasibility of the efficient allocation in the

decentralized economy, and its fragility. In particular, they show that there exists a whole

interval of deposit levels that can yield the efficient allocation in equilibrium. Among those

equilibria, the ones with lower deposit levels are more fragile, even though deposits do not

affect the probability of a bank run, which is sunspot-driven. In our framework instead,

the probability of a bank run is fully endogenous. Moreover, it is also a function of de-

posits. More importantly, depositors’ failure to recognize the effect of their saving choices

on financial fragility brings about the saving externality, that distorts the constrained

efficiency of the decentralized equilibrium. This further allows us to uniquely determine

the optimal policy to implement the constrained efficient allocation.
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The ability to endogenize the probability of a run relies on the use of global-game

techniques (e.g., Carlsson and van Damme, 1993; Morris and Shin, 2011). We share

with a growing number of papers (e.g. Choi, 2014; Vives, 2014; Eisenbach, 2017; Allen

et al., 2018; Ahnert et al., 2019) the use of global games to highlight the inefficiencies

associated with the role of banks as financial intermediaries and the desirability of policy

intervention.

Our analysis also connects to the literature that studies the constrained efficiency of

decentralized economies in the presence of externalities. Several papers build on financial

frictions as the source of externalities (Hart, 1975; Stiglitz, 1982). The resulting con-

strained inefficient allocations can be improved upon by policy interventions in financial

markets (Geanakoplos and Polemarchakis, 1985). Recent papers have studied the role of

pecuniary externalities (Caballero and Krishnamurthy, 2001; Lorenzoni, 2008; Davila and

Korinek, 2018), aggregate-demand externalities (Farhi and Werning, 2016; Caballero and

Simsek, 2019) and run externalities (Gertler et al., 2020). Still missing from the current

debate is an exploration of the interaction of coordination failures and deposit decisions

for the fragility and efficiency of market outcomes. Our work complements existing papers

by filling this gap.

We share the focus on the role of consumption-saving decisions for the efficiency

of decentralized equilibria with Davila et al. (2012). They show that in an economy

with idiosyncratic risk and incomplete markets, the competitive equilibrium is inefficient

because the agents do not internalize the effect of their saving choices on the return

from capital. We, instead, analyze an economy in which a mechanism to insure against

idiosyncratic shocks (i.e. banks) is readily available, but does not ensure the efficiency of

the competitive equilibrium. In fact, idiosyncratic-risk pooling via banks is what brings

about the saving externality.

Finally, our paper contributes to the literature on the saving glut and financial fragility.

Excessive savings around the world arguably bring about excessive leverage, bubbles in

asset markets, and other imbalances (Kindleberger and Aliber, 1978; Bernanke, 2005;

Caballero and Krishnamurthy, 2009). A handful of papers link over-saving to finan-
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cial fragility through lower bank incentives to monitor borrowers (Bolton et al., 2016;

Martinez-Miera and Repullo, 2017). Our framework instead, focuses on the liability side

of banks’ balance sheets and so links the inefficient level of savings to the occurrence of

bank runs.

2 A model with panic runs

Our model builds on Goldstein and Pauzner (2005), augmented to include a consumption-

saving decision. There are three dates (t = 0, 1, 2) and a single good that can be used for

consumption and saving. The economy is populated by a continuum of measure one of

banks, operating in a competitive market with free entry, and a continuum of measure

one of depositors for each bank.

Consumers. Consumers have a unitary endowment of the good at date 0 and nothing

thereafter. They can consume at date 0, 1 or 2. At date 1, they face an idiosyncratic

liquidity shock. Each of them has a probability λ of being an early consumer (impatient)

and a probability 1 − λ of being a late consumer (patient). Consumers learn their own

realization of the shock privately. The law of large numbers holds, so λ and 1 − λ are

also the fractions of consumers who turn out to be early and late, respectively. Early

consumers only want to consume at date 1, while late consumers are indifferent between

consuming at date 1 or 2. The expected utility of a consumer i is given by:

U(c0i, c1i, c2i) = u (c0i) + λu(c1i) + (1− λ)u(c1i + c2i), (1)

where the utility function is continuous and satisfies u′(c) > 0, u′′(c) < 0, and u(0) = 0.

The coefficient of relative risk aversion −cu′′(c)/u′(c) is greater than 1 for any c > 0.

At date 0, each consumer i takes a consumption-saving decision subject to the budget

constraint c0i + di = 1, where c0i is date-0 consumption, and di the amount that she de-

posits in a bank. In line with the literature, the relationship between banks and depositors

is exclusive, in the sense that a depositor only has one bank. In exchange for the funds
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deposited, each bank promises a gross fixed deposit rate r1 if the consumer withdraws at

date 1, and r2 > r1 if she withdraws at date 2 and the bank’s project is successful. Banks

offer deposit contracts competitively. Thus, they maximize depositors’ expected welfare,

subject to the budget constraint. This implies that depositors are residual claimants of

banks’ available resources at date 2, and the repayment r2 is equal to the return of the

non-liquidated units of the bank investment.

Banks. At date 0, banks use total collected deposits D to make an investment I in a

productive investment technology, with I = D.3 For each unit invested at date 0, the

investment returns 1 if liquidated at date 1 and a stochastic return R̃ at date 2 given by:

R̃ =

 R > 1 with prob. p(θ),

0 with prob. 1− p(θ).
(2)

The variable θ represents the fundamental of the economy and is uniformly distributed

over the interval [0, 1]. We assume that p(θ) = θ and E[θ]R > 1, which implies that the

expected long-term return of the investment is higher than its short-term return.4 Banks

satisfy withdrawal demand at date 1 by liquidating the productive investment. So, the

per-unit promised repayment at date 2 is a function of the deposit rate r1, and is given

by r2 = R 1−λr1
1−λ . Finally, if the liquidation proceeds are not enough to repay the promised

deposit rate r1 to all the withdrawing depositors, a bank liquidates all its investment and

distributes the proceeds pro-rata to all the withdrawing depositors at date 1.

Information. The fundamental of the economy θ is realized at the beginning of date

1, but publicly revealed only at date 2. At date 1, early depositors withdraw to satisfy

their consumption needs. Late depositors instead receive a private signal xi about the
3Lower case letters indicate individual variables, and upper case ones aggregate variables.
4The assumption of uniform distribution of fundamentals comes at no loss of generality. As argued by

Goldstein and Pauzner (2005), results would hold for any function p(θ), as long as it is strictly increasing
in θ. Under this condition, the probability of obtaining R can take any form.
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fundamental of the economy. The private signal xi is of the form:

xi = θ + ηi, (3)

where ηi are small error terms, indistinguishable from the true value of the fundamental θ

and independently and uniformly distributed over the interval [−ε,+ε]. A late depositor

uses her signal to infer both the fundamental of the economy and the withdrawal behavior

of the others. On this basis, late depositors decide whether to withdraw at date 1 (“run”)

or wait until date 2. As we will show in detail below, depositors run if the fundamental

of the economy θ falls below a unique threshold. In the region in which runs occur, they

can be classified either as fundamental-driven, meaning that they are only due to a low

realization of θ, or panic-driven, meaning that depositors run lest others do the same. In

this case, there will be no resources left for a bank to repay those who decided to wait.

Timing. At date 0, consumers choose how to allocate their unitary endowment between

consumption c0i and deposits di, and banks set the deposit rate r1. At date 1, after

receiving idiosyncratic liquidity shocks and private signals about the fundamental of the

economy θ, early depositors withdraw and late depositors decide whether to withdraw

or wait until date 2. At date 2, the banks’ investment return is realized and those late

depositors who have not withdrawn at date 1 get an equal share of the available resources.

Discussion of the assumptions. As standard in the banking literature, the deposit

rate r1 that banks pay at date 1 does not depend on the realization of the fundamental.

Equally standard is our assumption that deposits are priced linearly. Thus, we abstract

from the possibility that a bank conditions the deposit rate on the amount deposited.5 In

Appendix B, we instead account for the possibility that the amounts deposited depend on

the deposit rate, by modifying the timing of actions so that the banks choose the deposit

rate before consumers choose how much to deposit. We show that our results on the
5Empirical evidence supports this assumption. The difference between the national rates on jumbo

deposits (equal to or above US$100,000) and non-jumbo deposits (below US$100,000) in 12-month CDs
has been only 2 basis points on average over the period 2009-2021. Similarly tiny differences in returns
apply to different maturities, too. Source: Own calculations on data from the FDIC.
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existence of the saving externality are robust to this modification. While banks correctly

anticipate that changes in the deposit rate affect the amounts deposited by consumers,

they fail to enforce the constrained efficient amount of deposits, as this would distort the

provided amount of liquidity insurance.

In our framework, savings are fully intermediated by banks. Alternatively, one could

let consumers invest their savings directly into storage or in the investment technology. In

this case, our results would still hold. This is because banks provide liquidity insurance.

Hence, these alternative investments would be dominated by depositing into a bank.

More generally, as long as we interpret the undeposited endowment as date-0 con-

sumption, it is natural to assume that consumers enjoy a separable utility from it. Al-

ternatively, we could assume that the undeposited endowment is invested in a different

asset. In this case, all our results would still hold as long as utility is separable in bank

deposits. This would be akin to modeling deposits in the utility function (e.g. Van Den

Heuvel, 2008), and could be rationalized by depositors’ preference for liquidity. Intro-

ducing non-separable utility would instead require depositors to solve a more involved

portfolio choice. This would considerably complicate the analysis without affecting its

main qualitative insights.6

3 Decentralized equilibrium

In this section, we characterize the decentralized equilibrium of an economy in which late

depositors may run because they expect all the other depositors to do the same, i.e. there

is a panic-driven run. In this economy, banks choose the deposit contract, all consumers

take the consumption-saving decision, and late ones, based on their signals, decide when
6Deidda and Panetti (2017) formally show that introducing a portfolio problem in the Goldstein-

Pauzner framework does not alter in any crucial way the characterization of depositors’ withdrawal
decisions and of the run threshold.
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to withdraw following the threshold strategy:7

ai(xi) =


withdraw at date 1 if xi ≤ x∗i ,

withdraw at date 2 if xi > x∗i .

(4)

We solve the model by backward induction, and characterize a symmetric equilibrium so

that we can focus our attention on the behavior of a representative bank. The definition

of equilibrium is as follows:

Definition 1. A decentralized equilibrium with panic runs consists of a set of withdrawal

strategies {ai}i∈[0,1], vectors of quantities {c0i, di}i∈[0,1] and {D, I}, and a deposit rate r1

such that:

• For a given deposit rate r1 and deposits {di}i∈[0,1], upon receiving the signal xi,

depositors’ beliefs about early withdrawals are updated according to Bayes rule, and

the withdrawal strategies {ai}i∈[0,1] are chosen optimally;

• For given {di}i∈[0,1], the deposit rate r1 maximizes the depositors’ expected utility at

date 1, subject to the budget constraint D = I;

• The consumption-saving choices {c0i, di}i∈[0,1] maximize depositors’ expected utility

at date 0, subject to the budget constraint c0i + di = 1;

• The deposit market clears: D =
∫
i
didi.

3.1 Depositors’ withdrawal decision

We analyze depositors’ withdrawal decisions at date 1 for a given deposit rate r1 and

amount deposited di. Early depositors always withdraw at date 1 to satisfy their con-

sumption needs. In contrast, late depositors decide whether to withdraw at date 1 based

on the signal xi that they receive, since this provides information on both the fundamental

θ and other depositors’ actions. Upon receiving a high signal, a late depositor attributes
7Selecting threshold strategies comes at no loss of generality, as Goldstein and Pauzner (2005) show

in a similar environment that every equilibrium strategy is a threshold strategy.
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a high posterior probability to a positive bank project return R at date 2, and infers that

the other late depositors have also received a high signal. This lowers her belief about

the likelihood of a run and thus her own incentive to withdraw at date 1. Conversely,

when the signal is low, the opposite happens and a late depositor has a high incentive to

withdraw early. This suggests that late depositors withdraw at date 1 when the signal is

sufficiently low, and wait until date 2 when the signal is sufficiently high.

To show this formally, we first examine two regions of extremely bad and extremely

good fundamentals, where each late consumer’s action is based on the realization of the

fundamentals irrespective of beliefs about other agents’ behavior.

Lower dominance region. The lower dominance region of θ corresponds to the range

[0, θ] in which fundamentals are so bad that running is a dominant strategy. Upon re-

ceiving a signal indicating that the fundamentals are in the lower dominance region, a

late consumer is certain that the expected utility from waiting until date 2 is lower than

that from withdrawing at date 1, even if only λ early depositors were to withdraw. The

expected utility from waiting equals θu
(
R 1−λr1

1−λ di
)
, given that R(1−λr1)

1−λ is the per-unit re-

turn of deposit when only λ depositors withdraw. The expected utility from withdrawing

at date 1 instead equals u(r1di). Then, we denote by θ(r1, di) the value of θ that solves:

u(r1di) = θu

(
R

1− λr1
1− λ

di

)
, (5)

that is:

θ(r1, di) =
u(r1di)

u
(
R 1−λr1

1−λ di
) . (6)

We refer to the interval [0, θ(r1, di)] as the lower dominance region, where runs are only

driven by bad fundamentals.8

8For the lower dominance region to exist for any r1 ≥ 1, there must be feasible values of θ for which
all late depositors receive signals that assure them to be in this region. Since the noise contained in
the signal xi is at most ε, each late depositor withdraws at date 1 if she observes xi < θ(r1, di) − ε. It
follows that all depositors receive signals that assure them that θ is in the lower dominance region when
θ < θ(r1, di)− 2ε. Given that θ is increasing in r1, the condition for the lower dominance region to exist
is satisfied for any r1 ≥ 1 if θ (1, di) > 2ε.
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Upper dominance region. The upper dominance region of θ corresponds to the range(
θ, 1
]
in which fundamentals are so good that waiting is a dominant strategy for all late

depositors. As in Goldstein and Pauzner (2005), we construct this region by assuming

that in the range (θ, 1] the investment is safe, i.e. θ = 1, and yields the same return R > 1

at dates 1 and 2. This means that, given that n depositors run, a late depositor expects

to receive a repayment R−nr1
1−n di > r1di since R − r1 > 0 is required for the contract to

be incentive compatible (i.e. R − r1 > 0 is implied by r1 < r2 ≡ R(1−λr1)
1−λ ). Then, upon

observing a signal indicating that the fundamentals θ are in the upper dominance region,

a late consumer is certain to receive her payment R(1−λr1)
1−λ di at date 2, irrespective of

her beliefs about other depositors’ actions, and thus she has no incentives to run. As

before, the upper dominance region exists if there are feasible values of θ for which all

late depositors receive signals that assure them to be in this range. This is the case if

θ < 1− 2ε.

The intermediate region. The existence of the lower and upper dominance region

guarantees the existence of a threshold θ∗ in the intermediate region (θ(r1, di), θ], in which

a depositor’s decision to withdraw early depends on the realization of θ as well as on her

beliefs regarding other late depositors’ actions.

The characterization of the equilibrium run threshold θ∗ consists of two steps. First,

we show that no depositor has an incentive to deviate from the run strategy of all the

others. Second, we characterize the run threshold θ∗. We have the following lemma.

Lemma 1. Assume that all depositors −i run when their signals x−i ≤ x∗−i. Then, a

depositor i follows the same withdrawal strategy, i.e. she withdraws if xi ≤ x∗−i.

The above lemma shows that, from the point of view of a single depositor i, when

the fundamentals lie in the intermediate region, it is optimal to follow the withdrawal

strategy x∗−i of all the other depositors −i. This result hinges on two arguments. First,

large withdrawals of deposits at date 1 force the bank to liquidate its assets prematurely,

leaving no resources for those who wait and thus bringing about strategic complemen-

tarities between depositors’ actions. Second, when the fundamentals are above the lower
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dominance region, it is never optimal for a late depositor to run when she expects all

other late depositors to withdraw at date 2. Since depositors’ withdrawal decisions are

symmetric, it follows that each depositor withdraws if her signal is lower than x∗−i.

Having established that the relevant run threshold is x∗−i, we now compute it. We

start by specifying the utility differential between withdrawing at date 2 and at date 1

for a representative late consumer with deposit d−i. This is given by:

V−i(θ, n) =


θu
(
R 1−nr1

1−n d−i
)
− u(r1d−i) if λ ≤ n ≤ n,

0− u(d−i
n

) if n ≤ n ≤ 1,

(7)

where n represents the proportion of depositors withdrawing at date 1 and n = 1/r1 is

the value of n at which the bank exhausts its resources if it pays r1 > 1 to all withdrawing

depositors. For n ≤ n, a depositor who waits obtains R(1−nr1)
1−n with probability θ for each

unit d−i deposited, while an early withdrawer obtains r1. By contrast, for n ≥ n the bank

liquidates its entire investment at date 1. Late depositors receive either nothing if they

wait until date 2 or the pro-rata share d−i
n

if they withdraw early.

The function V−i(θ, n) decreases in n for n ≤ n and increases in it afterwards, crossing

zero once for n ≤ n and remaining always below afterwards. Thus, the model exhibits the

property of one-sided strategic complementarity and there exists a unique equilibrium in

which a late depositor −i runs if and only if her signal is below the threshold x∗(r1, d−i).

At this signal value, a late depositor is indifferent between withdrawing at date 1 and

waiting until date 2. The following proposition holds.

Proposition 1. In the economy with panic runs, each late depositor i runs if she observes

a signal below the threshold x∗(r1, d−i) and does not run above. At the limit, as the error

term ε→ 0, the threshold x∗(r1, d−i) simplifies to:

θ∗(r1, d−i) =

∫ n

λ

u(r1d−i)dn+

∫ 1

n

u
(
d−i
n

)
dn∫ n

λ

u
(
R 1−nr1

1−n d−i
)
dn

. (8)

The threshold θ∗(r1, d−i) is increasing in r1 and is not neutral to a change in the size of

14



the individual deposit d−i.

The proposition states that in the intermediate region, a late depositor’s action de-

pends uniquely on the signal that she receives, as this provides information both on the

fundamental of the economy θ and on the other depositors’ actions. This hinges on the

existence of strategic complementarities in depositors’ withdrawal decisions. If r1 > 1,

the bank has to liquidate more than one unit for each withdrawing depositor, which im-

plies that late depositors’ incentives to run increase with the proportion n of depositors

withdrawing early. In the limit case when ε→ 0, all late depositors behave alike as they

receive approximately the same signal and take the same action. This implies that only

complete runs, where all late depositors withdraw at date 1, occur. In what follows, we

focus on this limit case, and so the run threshold θ∗ is the probability of a run.9

In this economy, late depositors run because they fear that other depositors would

withdraw early, thus leaving no resources for the bank to pay them. Put differently, in

the intermediate region of fundamentals, runs are due to a coordination failure among

depositors, and thus we refer to them as “panic-driven”.

The run threshold θ∗(r1, d−i) increases with the deposit rate r1 offered by banks. An

increase in r1 increases depositors’ repayment at date 1 while decreasing that at date 2.

As a consequence, depositors’ incentive to run becomes higher.

Importantly, the run threshold θ∗(r1, d−i) also depends on the size of the individual

deposit d−i. This effect is more involved than the one of r1. On the one hand, a rise in the

deposited amount increases depositors’ repayment at date 1 thereby increasing incentives

to run. On the other hand, it also increases the repayment at date 2 thereby lowering

incentives to run. Formally, the sign of the effect of a change in the size of individual

deposit d−i is given by the sign of the following expression:

∫ n

λ

u′(c1)c1dn+

∫ 1

n

u′ (crun1 (n)) crun1 (n)dn−
∫ n

λ

θ∗u′ (c2(n)) c2(n)dn, (9)

where c1 = r1d−i, c2(n) = R 1−nr1
1−n d−i and crun1 (n) = d−i

n
. The first two terms in (9)

9In the limit case ε → 0, the probability of a run is equal to the probability that θ falls below θ∗.
Since θ ∼ U [0, 1], then prob(θ ≤ θ∗) = θ∗.
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Figure 2: Individual deposit and the run threshold. The figure illustrates the effect of
the size of the individual deposit d−i on the run threshold θ∗. Parameters: u(c) =
(c+f)1−σ−f1−σ

1−σ , σ = 3, f = 4, R = 5 and r1 = 1.1 and r1 = 1.003 for the solid and
dotted line, respectively.

represent the marginal utilities of date-1 consumption when a run does not occur and

depositors receive the promised consumption, and when a run occurs and they receive

a pro-rata share of bank available resources, respectively. The third term is instead the

expected marginal utility of date-2 consumption. As depositors are risk averse, the overall

effect of a rise in d−i depends on their expected level of consumption, in that they value an

increase in consumption more when they are poorer. Hence, the overall effect of a rise in

d−i depends on their expected level of consumption at date 1 versus date 2. Specifically,

while the first two terms of (9) are positive, the third term is negative and could, in

principle, dominate them, as utility is concave and date-2 consumption goes to zero when

the proportion of early withdrawers approaches n. However, the assumption that u(0) = 0

implies an upper bound on the magnitude of limc→0 u
′(c)c that limits this effect. Figure

2 provides a numerical example in which this happens, and therefore the probability of a

panic run is increasing in deposits. The comparison between the solid line and the dotted

line also confirms Proposition 1 that θ∗ is increasing in the deposit rate r1.

3.2 Deposit rate and saving decisions

Having analyzed the depositors’ decision to run, we now characterize the terms of the

deposit contract r1, and the consumption-saving decision at date 0.
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Bank. Given the aggregate amount deposited and anticipating depositors’ withdrawal

decision, as summarized by the run threshold θ∗(r1, d−i), the bank chooses r1 to maximize

the expected utility of a representative depositor i by solving the following problem:

max
r1

∫ θ∗(r1,d−i)

0

u(di)dθ +

∫ 1

θ∗(r1,d−i)

[
λu(r1di) + (1− λ)θu

(
R

1− λr1
1− λ

di

)]
dθ. (10)

The first term represents the expected utility from depositing at a bank, when the fun-

damental of the economy lies below θ∗. In this case, all depositors run and receive back

their initial deposits di. The second term is the expected utility when θ is above θ∗. In

this case, the bank continues operating until date 2, λ early depositors receive r1di, and

1− λ late depositors receive a pro-rata share of the residual resources with probability θ

and nothing otherwise.

Consumers. At date 0, each consumer i chooses the amount to deposit di and the

date-0 consumption c0i to maximize her utility by solving:

max
di,c0i

u(c0i) +

∫ θ∗(r1,d−i)

0

u(di)dθ +

∫ 1

θ∗(r1,d−i)

[
λu(r1di) + (1− λ)θu

(
R

1− λr1
1− λ

di

)]
dθ,

(11)

subject to the budget constraint di = 1− c0i. At date 0, higher di reduces the amount c0i

available for consumption. At date 1, if there is a run all consumers get back the deposit

di. If there is no run, impatient depositors get r1di at date 1, while patient depositors

receive a share of the residual banks’ resources at date 2. Notice that, as proved in Lemma

1 and Proposition 1, from the point of view of a single depositor i the run threshold is only

a function of the deposit rate r1 and of the deposit decisions d−i of everybody else, and

not of the individual amount deposited di. Therefore, when deciding how much to deposit,

the consumer does not internalize the impact of her own savings on the probability of a

run.

Having described the bank’s and consumers’ problems, the following proposition char-

acterizes the decentralized equilibrium with panic runs.

Proposition 2. The decentralized equilibrium with panic runs is given by r1 > 1 and
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d > 0 that solve:

∫ 1

θ∗(r1,d)

[
u′(r1d)− θRu′

(
R

1− λr1
1− λ

d

)]
dθ − ∂θ∗(r1, d)

∂r1

∆

λd
= 0, (12)

u′(1− d) =

∫ θ∗(r1,d)

0

u′(d)dθ+

+

∫ 1

θ∗(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ, (13)

respectively and

di = d−i = d = D, (14)

where ∆ = λu(r1d) + (1 − λ)θ∗u
(
R 1−λr1

1−λ d
)
− u(d), and θ∗(r1, d) comes from (8) when

d−i = d.

In choosing r1, the bank trades off its marginal benefit with its marginal cost. The

former, represented by the first term in (12), captures improved risk-sharing obtained

from the transfer of consumption from late to early depositors. The latter, represented by

the second term of (12), is the loss in expected utility ∆ due to the increased probability

of a run, as measured by the derivative of the panic-run threshold θ∗ with respect to r1.

The provision of bank liquidity insurance to depositors is captured by r1 > 1. As

in Diamond and Dybvig (1983) and subsequent papers, being risk averse and exposed

to the risk of being impatient, depositors value the possibility of obtaining an amount

of consumption higher than their original deposit at date 1, even if this implies a lower

amount of consumption at date 2. Setting r1 = 1 would rule out panics (i.e., θ∗ = θ).

This implies that the utility loss of a run, as captured by ∆, becomes zero. However, the

marginal benefit of risk-sharing remains positive, so this cannot be an equilibrium.

In choosing the deposit d, a consumer again trades off marginal cost and marginal

benefit. The former comes from less consumption at time 0, as captured by the left-hand

side of (13). The latter comes from more consumption at dates 1 and 2, as captured by

the right-hand side of (13).

We can substitute (14) and (12) into (13) and obtain an expression summarizing the
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decentralized equilibrium:

u′(1−D) =

∫ θ∗(r1,D)

0

u′(D)dθ +

∫ 1

θ∗(r1,D)

u′(r1D)dθ − (1− λr1)
∆

λD

∂θ∗(r1, D)

∂r1
. (15)

The equation above resembles an Euler equation as typically used in dynamic macroeco-

nomic models: It determines the equilibrium level of savings as the quantity that equates

their marginal cost and benefit in terms of present vs. expected future consumption. In

the rest of the analysis, we use this equation to compare the decentralized equilibrium

with the constrained efficient allocation.

4 Constrained efficiency and optimal policy

To study the efficiency of the decentralized equilibrium, we characterize a constrained-

efficient benchmark. To do so, we consider a social planner who can only offer demand-

deposit contracts like banks. Hence, the planner is subject to panic runs in the same way

as banks, and takes as given depositors’ withdrawal strategies, as characterized by the

run threshold θ∗ in (8), evaluated at di = d−i = D.

At date 0, the planner allocates C0 = 1 − D resources to consumption and uses all

deposits to finance investment. Since, as in the decentralized economy, the investment

technology yields a unitary return at date 1, all consumers receive Crun
1 = D if there is a

run at date 1. If there is no run, early consumers receive C1 = r1D, while late consumers

obtain C2 that clears the planner’s resource constraint:

λC1 + (1− λ)
C2

R
= 1− C0. (16)

The planner chooses r1 and D to maximize the economy’s expected aggregate welfare:

u(C0) +

∫ θ∗(r1,D)

0

u(Crun
1 )dθ +

∫ 1

θ∗(r1,D)

[λu(C1) + (1− λ)θu (C2)] dθ. (17)

The following lemma characterizes the constrained efficient allocation.
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Lemma 2. The constrained-efficient equilibrium with panic runs is given by r1 > 1 and

D > 0 that solve:

∫ 1

θ∗(r1,D)

[
u′(r1D)− θRu′

(
R

1− λr1
1− λ

D

)]
dθ − ∂θ∗(r1, D)

∂r1

∆

λD
= 0, (18)

u′(1−D) =

∫ θ∗(r1,D)

0

u′(D)dθ+

+

∫ 1

θ∗(r1,D)

[
λr1u

′(r1D) + θR(1− λr1)u′
(
R

1− λr1
1− λ

D

)]
dθ − ∂θ∗(r1, D)

∂D
∆,

(19)

where ∆ = λu(r1D) + (1− λ)θ∗u
(
R 1−λr1

1−λ D
)
− u(D), and θ∗(r1, D) comes from (8).

The planner chooses the optimal level of liquidity insurance r1 in the same way as

banks in the decentralized economy. In doing so, it leaves the economy exposed to panic-

driven runs, i.e. r1 > 1, as this entails first-order benefits in terms of liquidity insurance.

Regarding the savings choice, the planner trades off its marginal cost, in terms of lower

date-0 consumption, with its marginal benefit, in terms of higher date-1 and date-2 con-

sumption. However, unlike individual consumers in the decentralized economy, the plan-

ner takes into account the effect of the level of deposits on the probability of a run. This

is captured by the last term on the right-hand side of (19). In other words, differently

from the planner, the decentralized economy exhibits a “saving externality” in the sense

that depositors do not internalize the effect of their consumption-saving decisions on the

likelihood of panic runs.

To ease the comparison with the decentralized economy, it is useful to substitute (18)

into (19) and obtain:

u′(1−D) =

∫ θ∗(r1,D)

0

u′(D)dθ+

+

∫ 1

θ∗(r1,D)

u′(r1D)dθ − (1− λr1)
∆

λD

∂θ∗(r1, D)

∂r1
− ∂θ∗(r1, D)

∂D
∆. (20)

The following proposition compares the social planner allocation with the decentralized
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equilibrium. This boils down to the comparison between (20) and (15), as the other

equations that pin down the allocation are the same under the social planner as in the

decentralized economy.

Proposition 3. The decentralized equilibrium with panic runs is not constrained effi-

cient. It exhibits an inefficient level of bank liquidity insurance and savings, and, in turn,

excessive financial instability.

By internalizing the effects of savings on the likelihood of panic runs, the social planner

chooses a different level of savings than in the decentralized equilibrium. Hence, in the

decentralized equilibrium, the level of deposits is constrained inefficient and financial

fragility excessive, in that runs are too frequent. The excessive fragility of the decentralized

economy is not driven by the bank’s distorted incentives, but rather relies on the saving

externality: The individual depositor fails to internalize the effect that her saving decision

has on her own and other depositors’ withdrawal decisions.

Interestingly, one implication of the comparison between the constrained efficient al-

location and the decentralized economy is that the level of bank liquidity insurance, as

measured by r1 > 1, is also constrained inefficient. As mentioned above, this is at odds

with the results in Goldstein and Pauzner (2005) and is exclusively due to the saving

externality and the fact that banks intermediate an inefficient amount of deposits. For

a given aggregate level of deposits, r1 is the same in the decentralized economy and in

the constrained efficient one, since (12) and (18) are identical. Thus, if depositors saved

the constrained efficient amount, banks would provide the constrained efficient level of

liquidity insurance.

4.1 Optimal policy

We have shown that the decentralized equilibrium features a saving externality. The

resulting inefficiency creates a motive for public intervention. The aim of this section is

to show how the constrained-efficient allocation can be implemented in the decentralized

economy. To this end, we introduce a policy-maker who can impose proportional taxes
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on deposit holdings τ . The government collects taxes and rebates revenues to consumers

as a lump-sum transfer T to clear its budget constraint:

T = τD. (21)

The consumer’s date-0 budget constraint reads:

c0i + (1 + τ) di = 1 + T. (22)

Except for the above budget constraints, the economy is the same as described in

Section 3. The following lemma characterizes the equilibrium conditions of the economy

with taxes.

Lemma 3. Given a tax on deposit holdings τ , the decentralized equilibrium is character-

ized by: ∫ 1

θ∗(r1,d)

[
u′(r1d)− θRu′

(
R

1− λr1
1− λ

d

)]
dθ − ∂θ∗(r1, d)

∂r1

∆

λd
= 0, (23)

(1 + τ)u′ (1− d) =

∫ θ∗(r1,d)

0

u′ (d) dθ+

+

∫ 1

θ∗(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ, (24)

di = d−i = d = D, (25)

where ∆ = λu(r1d) + (1− λ)θ∗(r1, d)u
(
R 1−λr1

1−λ d
)
− u(d).

The tax policy creates a wedge in the intertemporal consumption-savings decision,

thereby discouraging or encouraging savings. This can be seen by comparing (24) with

(13). Optimal taxation is characterized in the following proposition.

Proposition 4. The tax on deposit holdings that decentralizes the constrained efficient

allocation is:

τ opt =
∆

u′(1−D)

∂θ∗(r1, D)

∂D
. (26)
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The optimal wedge is increasing in the marginal effect of deposits on the run prob-

ability ∂θ∗(r1,D)
∂D

and the cost of bank runs ∆. The former indicates the strength of the

saving externality and the latter the benefit of reducing the probability of bank runs.

The optimal wedge is also decreasing in the marginal utility of date-0 consumption. This

reflects a wealth effect: The cost of reducing bank intermediation is larger in a poorer

economy. Hence, a benevolent policy-maker should intervene less. The sign of the saving

externality determines whether the optimal policy is a tax on or a subsidy to deposits. As

long as the wedge is positive, i.e., ∂θ
∗(r1,D)
∂D

, a benevolent policy-maker should tax deposits

to correct over-saving and restore the constrained efficient allocation.

5 Conclusions

Does the size of a bank’s deposit base matter for its fragility? If so, do agents correctly

internalize this effect when deciding how much to deposit into a bank? We answer these

questions in a banking model with endogenous depositors’ runs and consumption-saving

decisions. Our contribution is twofold. First, we find that the probability of runs is affected

by the level of deposits in the economy, and that this effect is increasing in a reasonable

parameter space. Second, we show that individual depositors do not internalize the effect

on financial fragility when choosing how much to deposit into a bank. The resulting

saving externality represents a novelty in the bank-run literature and has important

implications for the constrained efficiency of the decentralized equilibrium. Policy-makers

should induce individual depositors to internalize the effect of their consumption-saving

decisions on financial stability. When the economy features over-saving, a tax on deposits

is effective in restoring constrained efficiency.

The saving externality is rooted in the strategic complementarity characterizing de-

positors’ withdrawal decisions. In other words, its existence is linked to the occurrence

of panic-driven runs. This suggests that eliminating panic-driven runs should also make

the saving externality disappear. The banking literature (Diamond and Dybvig, 1983) has

focused on various policy interventions meant to remove the strategic complementarity in
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depositors’ withdrawal decisions, like deposit insurance or a lender of last resort (LOLR)

policy. As long as those policies fully guarantee depositors to receive the promised repay-

ments in all possible circumstances, they are effective in restoring the constrained efficient

allocation by removing the saving externality.

In more realistic frameworks where the presence of fundamental risk prevents the

policy authority from fully guaranteeing depositors to receive the promised repayments,

the saving externality instead might not disappear. An example of this case is an inter-

vention designed to provide liquidity only to solvent but illiquid banks, in line with the

prescription of Bagehot (1873). Such a policy removes panic-driven runs but does not

eliminate the dependence of individual depositors’ withdrawal decisions on other depos-

itors’ actions, as those determine whether the bank is solvent or not. As a result, the

saving externality is still present.10

This suggests that there are circumstances in which prudential policies to resolve co-

ordination failures may need to be complemented by other interventions meant to resolve

the saving externality. In this respect, our paper highlights an additional potential draw-

back associated with bank guarantees. Besides the well-known moral hazard problems on

the side of banks, emergency liquidity provision by central banks may also distort savers’

incentives, and translate into an excessively large and fragile financial system.

10The characterization of this case is available upon request.
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A Proofs

Proof of Lemma 1. The proof is done by contradiction. Assume first that depositor i

finds it optimal not to run when the other depositors run, i.e., x∗i < x∗−i. Then, depositor

i receives 0 in the range
(
x∗i , x

∗
−i
)
at date 2, while she could get di if joining the run.

Hence, x∗i < x∗−i cannot hold. Assume now that depositor i finds it optimal to run when

the others do not run, i.e., x∗i > x∗−i. Then, depositor i receives u(r1di) in the range

(x∗−i, x
∗
i ) when she runs, while she expects to receive u(r2di) = u

(
R 1−λr1

1−λ di
)
at date 2.

Yet, u(r1di)/u(r2di) = θ(r1, di) by definition, and θ(r1, di) < x∗i by construction. Hence,

x∗i > x∗−i cannot be optimal and the lemma follows.11

Proof of Proposition 1. The proof follows closely the one in Goldstein and Pauzner

(2005) since our model also exhibits one-sided strategic complementarities.

The arguments in the proof in Goldstein and Pauzner (2005) establish that there is

a unique equilibrium in which depositors run if and only if the signal they receive is

below a common signal x∗. The number n of depositors withdrawing at date 1 is equal

to the probability of receiving a signal xi below x∗ and, given that depositors’ signals are

independent and uniformly distributed over the interval [θ − ε, θ + ε], it is:

n(θ, x∗) =


1 if θ ≤ x∗ − ε

λ+ (1− λ)
(
x∗−θ+ε

2ε

)
if x∗ − ε ≤ θ ≤ x∗ + ε

λ if θ ≥ x∗ + ε

(27)

When θ is below x∗ − ε, all patient depositors receive a signal below x∗ and run.

When θ is above x∗ + ε, all 1− λ late depositors wait until date 2, and only the λ early

depositors withdraw early. In the intermediate interval, when θ is between x∗ − ε and

x∗ + ε, there is a partial run as some of the late depositors run. The proportion of late

depositors withdrawing early decreases linearly with θ as fewer agents observe a signal
11This result is based on guessing that θ(r1, di) < x∗−i, which is always verified in a symmetric equi-

librium. Alternatively, if x∗−i < θ(r1, di) < x∗i , in the interval (x∗−i, θ(r1, di)) the depositor i might find it
optimal to run if u(r1di) > θu(r2di) and therefore x∗i = max{x∗−i, θ(r1, di)}. This case would not yield
any difference relative to the equilibrium analyzed in Section 3, and its characterization is available upon
request.
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below the threshold.

Denote as ∆(xi, n(θ)) a depositor’s expected utility difference in utility between with-

drawing at date 2 and date 1 when he holds beliefs n(θ) regarding the number of depositors

running, which is given in (27) since for any realization of θ, the proportion of depositors

running is deterministic. The function ∆(xi, n(θ)) is equal to

∆(xi, n(θ)) =
1

2ε

∫ xi+ε

xi−ε
V(θ, n(θ))dθ, (28)

where V(θ, n(θ)) is given in (7) and n(θ) = n(θ, x∗) as given in (27). The function

∆(xi, n(θ)) is continuous in xi and increases continuously in positive shifts in the signal

xi and proportion of depositors running n(θ). The proof of the properties of ∆(xi, n(θ)),

as well as the rest of the proof follows closely Goldstein and Pauzner (2005), thus we omit

it for brevity.

Having characterized the proportion of agents withdrawing for any possible value of

the fundamentals θ, we can now compute the threshold signal x∗−i. A patient depositor

−i who receives the signal x∗−i must be indifferent between withdrawing at date 1 and

at date 2. The threshold x∗−i can be then found by equalizing the following expression to

zero:

f(θ, r1, d−i) =

∫ 1
r1

λ

[
θu

(
R

1− nr1
1− n

d−i

)
− u(r1d−i)

]
dn+

∫ 1

1
r1

[
u(0)− u

(
d−i
n

)]
dn,

(29)

where θ(n) = x∗−i + ε − 2ε (n−λ)
1−λ from (27). Equation (29) follows from (7) and requires

that a late depositor’s expected utility when he or she withdraws at date 1 is equal to

that when he or she waits until date 2. Note that in the limit, when ε→ 0, θ(n)→ x∗−i,

and we denote it as θ∗(r1, d−i).

To prove that θ∗(r1, d−i) is increasing in r1 we use the implicit function theorem on

(29) and obtain:
∂θ∗(r1, d−i)

∂r1
= −

∂f(·)
∂r1
∂f(·)
∂θ∗

. (30)

It is easy to see that ∂f(·)/∂θ > 0. Thus, the sign of ∂θ∗(r1, d−i)/∂r1 is given by the
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opposite sign of ∂f(·)/∂r1. This is given by:

∂f(·)
∂r1

= −d−i
∫ 1

r1

λ

[
u′(r1d−i) + θ∗

nR

1− n
u′
(
R

1− nr1
1− n

d−i

)]
dn < 0. (31)

Hence, the proposition follows.

Proof of Proposition 2. Differentiating the bank’s objective function in (10) with re-

spect to r1, we obtain (12). Similarly, differentiating (11) with respect to d yields (13).

To prove that r1 > 1, evaluate (12) at r1 = 1 using di = d−i = d = D. This leads to:

λ

∫ 1

θ

[u′(d)d− θRdu′(Rd)] , (32)

since θ∗ → θ when r1 = 1, and ∆ = 0 by definition of θ in (6). This expression is positive

because relative risk aversion is larger than 1 for c > 0 and c < I. To see that, notice

that u′(d)d− θRdu′(Rd) > u′(d)d− Rdu′(Rd) and u′(c)c is decreasing in c. This follows

directly from −u′′(c)c/u′(c) > 1. Notice that the solution is an interior because for given

d, the equilibrium r1 must be consistent with runs not always occurring, i.e., with θ∗ < θ.

Choosing r1 such that θ∗ → θ → 1 would imply that depositors obtain u(d), which is even

lower than the utility that they could obtain by setting r1 = 1. The equilibrium size of

deposit d is also an interior solution for any r1 since by choosing d = 0 depositors would

accrue u(1), which is lower than what they could obtain by accessing liquidity insurance

provided by bank deposits. Thus, the proposition follows.

Proof of Lemma 2. The two conditions in the lemma are obtained by simply differ-

entiating (17) with respect to r1 and D. The proof of r1 > 1 is analogous to that of

Proposition 2.

Proof of Proposition 3. The proof follows directly from the comparison of (15) and

(20). When evaluating (15) at the optimal level of investment solving (20), (15) is positive

since the two first-order conditions only differ for the term ∂θ∗

∂D
∆. This implies that in the

decentralized allocation, the level of aggregate deposits D is different than that chosen

by the planner. The results about the excessively high level of financial fragility follow
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directly from the fact that the planner chooses the level of aggregate deposits to limit

runs, as panic runs are inefficient and reduce the economy expected aggregate welfare in

(17). Finally, the inefficient level of liquidity insurance provided by banks to consumers

emerges as the result of the fact that both the banks and the planner take r1 as the

solution to (12). However, the level of deposits d is not the same in the decentralized

allocation and in the planner’s one, which determines a difference between the r1 set by

banks in the decentralized allocation and that set by the planner. Thus, the proposition

follows.

Proof of Lemma 3. The derivation follows the steps of the proof of Proposition 2. The

tax only affects the consumer’s problem. For a general run threshold θ̃, the problem

becomes:

max
d

u [1− (1 + τ)d+ T ] +

∫ θ̃(r1,d)

0

u (d) dθ+

+

∫ 1

θ̃(r1,d)

[
λu(r1d) + (1− λ)θu

(
R

1− λr1
1− λ

d

)]
dθ. (33)

Given that consumers behave symmetrically, we can write the associated first-order con-

dition as

(1 + τ)u′ (1− d) =

∫ θ̃(r1,d)

0

u′ (d) dθ+

+

∫ 1

θ̃(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ. (34)

Hence, the lemma follows.

Proof of Proposition 4. Constrained efficiency is determined by Lemma 2. By substi-

tution, we find that the expression in the lemma makes the decentralized equilibrium

identical to the constrained efficient one.
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B Alternative specification: Individual deposits as a

function of the deposit rate

In this appendix, we prove the robustness of our result concerning the existence of the

saving externality, by considering an alternative specification. Specifically, we study an

economy in which the individual saving decisions depend on the deposit rate set by the

bank. To achieve this, we modify the timing of the actions at date 0 as follows: First, the

bank sets r1; then, for given r1, each depositor i chooses the amount of deposits di.

As in the main text, the model is solved by backward induction. The date-1 decision

is as in the main text, and the same applies to the choice of d. Hence, the run threshold

is still given by (8) and di = d−i = d still solves (13). However, it is evident that the

bank has the possibility to affect the equilibrium amount of deposits via the choice of the

deposit rate r1. This choice is taken by the bank in the previous stage as the solution to:

max
r1

EU =

∫ 1

0

u (1− d) dθ+

+

∫ θ∗

0

u (d) dθ +

∫ 1

θ∗

[
λu (r1d) + (1− λ)u

(
R

1− λr1
1− λ

d

)]
dθ. (35)

The first-order condition with respect to r1 can be expressed in a compact formulation

as:

FOCr1 =
∂EU

∂r1
+
∂EU

∂d

dd

dr1
. (36)

Using (13), we know that:
∂EU

∂d
= 0 +

∂θ∗

∂d
∆, (37)

with ∆ as specified in Proposition 2. It follows that the condition FOCr1 = 0 can be

expressed as follows:

∫ 1

θ∗

[
u′(r1d)dθ −Rθu′

(
R

1− λr1
1− λ

d

)]
=

(
∂θ∗

∂r1
+
∂θ∗

∂d

dd

dr1

)
∆

λd
. (38)

Moving on to the analysis of the constrained efficient allocation, we follow the same

steps as before but notice that the planner internalizes the fact that ∂θ∗

∂d
is different from
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zero, so ∂EU
∂d

= 0. This gives the following first-order condition with respect to r1:

∫ 1

θ∗
Rθu′

(
R

1− λr1
1− λ

d

)
dθ =

∫ 1

θ∗
u′ (r1d) dθ − ∂θ∗

∂r1

∆

λd
, (39)

while the first-order condition with respect to d is equal to:

u′ (1− d) =

∫ θ∗

0

u′ (d) dθ +

∫ 1

θ∗

[
λr1u

′ (r1d) +Rθ (1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ − ∂θ∗

∂d
∆.

(40)

Substituting (36) into (13), we obtain:

u′ (1− d) =

∫ θ∗

0

u′ (d) dθ +

∫ 1

θ∗
u′ (r1d) dθ − (1− λr1)

(
∂θ∗

∂r1
+
∂θ∗

∂d

dd

dr1

)
∆

λd
. (41)

Doing the same for the planner yields instead:

u′ (1− d) =

∫ θ∗

0

u′ (d) dθ +

∫ 1

θ∗
u′ (r1d) dθ − (1− λr1)

∂θ∗

∂r1

∆

λd
− ∂θ∗

∂d
∆. (42)

Comparing (41) and (42), they differ because of the term:

dd

dr1
− λ

1− λr1
d, (43)

We can compute dd
dr1

using the implicit function theorem as follows:

dd

dr1
= −

∂FOCd
∂r1

SOCd
, (44)

where:

∂FOCd
∂r1

=
∂θ∗

∂r1

[
λr1u

′ (r1d) dθ +Rθ∗ (1− λr1)u′
(
R

1− λr1
1− λ

d

)
− u′ (d)

]
+

− λ
∫ 1

θ∗

[
u′ (r1d) dθ −Rθu′

(
R

1− λr1
1− λ

d

)]
dθ+

− λd
∫ 1

θ∗

[
r1u
′′ (r1d) dθ −R2θ

(1− λr1)
1− λ

u′′
(
R

1− λr1
1− λ

d

)]
dθ, (45)
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and:

SOCd =− u′′ (1− d) +
∂θ∗

∂d

[
λr1u

′ (r1d) dθ +Rθ∗ (1− λr1)u′
(
R

1− λr1
1− λ

d

)
− u′ (d)

]
+

−
∫ θ∗

0

u′′ (d) dθ +

∫ 1

θ∗

[
λr21u

′′ (r1d) dθ +R2θ
(1− λr1)2

1− λ
u′′
(
R

1− λr1
1− λ

d

)]
dθ.

(46)

The expression in (44) is different from zero. In other words, the saving externality is

present also when the bank anticipates that its choice of the deposit rate affects depositors’

consumption-saving decisions. The intuition behind this result is that the bank tries to

trade off setting a deposit rate that induces depositors to choose the constrained efficient

amount of deposits, with the one that achieves the constrained efficient level of liquidity

insurance. However, the bank cannot achieve both objectives at the same time with a

single instrument, so the equilibrium allocation is still constrained inefficient.
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